Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light.
نویسندگان
چکیده
Photodynamic therapy (PDT) requires oxygen to cause cellular and vascular tumor damage. Tissue oxygen concentration, in turn, is influenced by blood flow and blood oxygenation. Real-time clinical measurement of these hemodynamic quantities, however, is rare. This paper reports the development and application of a probe, combining diffuse reflectance spectroscopy (DRS) for measurement of tumor blood oxygenation and diffuse correlation spectroscopy (DCS) for measurement of tumor blood flow. The instrument was adapted for clinical use during interstitial prostate PDT. Three patients with locally recurrent prostate cancer received 2 mg/ kg motexafin lutetium (MLu) 3 h before illumination and a total light dose of 100 J/cm(2) at 150 mW/cm. Prostrate blood oxygen saturation (StO2) decreased only slightly (approximately 3%) after treatment. On the other hand, prostate blood flow and total hemoglobin concentration over the course of PDT decreased by 50% and 15%, respectively, suggesting MLu-mediated PDT has an anti-vascular effect. While it is certainly impossible to draw definite conclusions from measurements of only three patients, the observed differences in tumor blood flow and blood oxygenation responses during PDT can, in principle, be used to choose among tissue oxygen consumption models and therefore emphasize the potential clinical value for simultaneous monitoring of both parameters.
منابع مشابه
Photodynamic therapy for prostate cancer: One urologist's perspective.
Photodynamic therapy (PDT) has slowly found its place in the treatment of human disease. Currently, photodynamic therapy is being explored as a treatment option for localized prostate cancer. PDT for the treatment of prostate cancer will require ablation of both malignant and non-malignant glandular epithelium. Ablation of both malignant and normal epithelium adds a new treatment dimension sinc...
متن کاملBioimpedance for pain monitoring during cutaneous photodynamic therapy: Preliminary study.
BACKGROUND Pain is a well-known problem associated with light exposure during topical photodynamic therapy (PDT). Different methods for dealing with the pain have been developed over the past years, ranging from cooling with air or water to nerve blocking. However, the mechanisms responsible for the pain induction have not yet been fully understood. AIM This study aims to evaluate bioimpedanc...
متن کاملPhotosensitivity and Radiosensitivity of Indocyanine Green on Human Cell Lines MCF7 and DFW
Background & Aims: In this study with the aim of benefiting from non-laser sources in photodynamic therapy, photo and radio sensitivity of indocyanine green as a sensitizer in photodynamic and radiation therapies were investigated. Methods: Based on the broad absorption peak of indocyanine green and using non-coherent light, the experiments were performed on human cells derived from breast canc...
متن کاملSystem for interstitial photodynamic therapy with online dosimetry: first clinical experiences of prostate cancer.
The first results from a clinical study for Temoporfin-mediated photodynamic therapy (PDT) of low-grade (T1c) primary prostate cancer using online dosimetry are presented. Dosimetric feedback in real time was applied, for the first time to our knowledge, in interstitial photodynamic therapy. The dosimetry software IDOSE provided dose plans, including optical fiber positions and light doses base...
متن کاملEffect of Silver Nanoparticles on Improving the Efficacy of 5-Aminolevulinic Acid-Induced Photodynamic Therapy
Introduction: The most important limitation of 5-aminolevulinic acid (5-ALA)-induced photodynamic therapy (PDT) is the efficacy of the cells in converting 5-ALA to protoporphyrin IX. The present study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) with the photosensitivity at the surface plasmon resonance wavelength on 5-ALA-mediated PDT. Material and Methods: First of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Photochemistry and photobiology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 2006